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Abstract

	 We	consider	ordered	rings	or	ordered	fields,	and	give	several	related	matters	and	examples.	We	give	characterizations	for	residue	

class	rings	of	ordered	rings	to	be	ordered	rings	(or	ordered	integral	domains).	Further,	we	give	a	characterization	for	an	ordered	

ring R to satisfy the condition that all homomorphisms of R to any ordered ring are order-preserving.
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Introduction

 The symbol R; Q; Z; or N	is	the	field	of	real	numbers;	the	field	of	rational	numbers;	the	ring	of	integers;	or	the	set	of	positive	

integers, respectively.

	 The symbol R or R’	is	a	(non-zero)	commutative	ring,	unless	otherwise	stated.

 We recall that R is called an ordered ring (or totally ordered ring) if it has a total order such that this ordering relation is order-

preserving with respect to addition and multiplication. In particular, when R	 is	a	field,	such	an	R	 is	called	an	ordered	field.	

(Ordered	fields	are	considered	in	[3],	[4],	[5],	[6],	etc.,	in	terms	of	the	axiom	of	continuity	or	Archimedes’	axiom).

	 We	consider	partially	or	totally	ordered	rings,	and	give	several	related	matters	and	examples.	The	ordering,	positive	or	non-

negative	cones	will	play	important	roles	in	the	theory	of	ordered	integral	domains	or	ordered	rings.	We	give	a	characterization	

for residue class rings of ordered rings to be ordered rings, or ordered integral domains.

 As is well-known, all homomorphisms of R	 to	any	ordered	field	are	order-preserving.	However,	for	some	subfield	F of R 

having	different	total	orders	as	an	ordered	field,	the	identity	map	on	F is not order-preserving. Then, let us consider an ordered 

field	K	which	satisfies	condition:	(C)	all	homomor	phisms	of	K	 to	any	ordered	field	are	order-preserving.	We	note	that	if	K is 

Archimedean,	and	the	homomorphisms	are	continuous,	then	(C)	holds	(see	[6],	etc.).	We	give	an	example	of	a	non-Archimedean	
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ordered	field	satisfy	ing	 the	condition	(C).	We	show	that	an	ordered	field	K	 satisfies	(C)	 iff	K has only one positive cone; 

generally, we obtain an analogous result among ordered rings.

Results

 First, let us review ordering relations on sets, and partially or totally ordered rings, and related matters.

 Let A be a set, and ≤ be an ordering relation in A. Then ≤ is a partial order (or semi-order)	 if	 it	satisfies	 the	following	

conditions: (i) x ≤ x for all x ∈ A, (ii) x ≤ y and y ≤ x implies x = y, and (iii) x ≤ y and y ≤ z implies x ≤ z.

 We assume that every partially order ≤ in A	satisfies:	for	any	x, y ∈ A, two of x < y, y < x, x = y do not hold simultaneously.

 A partial order ≤ is a total order (or linear order)	if	 it	moreover	satisfies	the	following	condition:	For	any	x, y ∈ A, either  

x ≤ y or y ≤ x.

	 Definition 1. (1) R is a partially ordered ring	if	the	following	(pR)	holds	(cf.	[1],	etc.).

 (pR): R has a partial order ≤ satisfying the following conditions:

 (or 1) a ≤ b implies a + x ≤ b + x for all x.

 (or 2) a ≤ b and 0 ≤ x implies ax ≤ bx.

	 To	define	such	a	partial	ordering	relation	on	R, it is enough to specify the elements ≥ 0, subject to:

 (pR)*: R has a relation ≤ satisfying the following conditions:

 (or 0)* a ≥ 0 and −a ≥ 0 iff a = 0.

 (or 1)* a, b ≥ 0 implies a + b ≥ 0.

 (or 2)* a, b ≥ 0 implies ab ≥ 0.

 (2) As is well-known, R is an ordered ring (or totally ordered ring) if (R) below holds. When R is an integral domain (resp. 

field),	such	an	R is called an ordered integral domain (resp. ordered field).

 (R): R has a total order ≤ satisfying (or 1) and (or 2).

 For a ring R with the order ≤ in (R) (or (pR)), we shall denote it by (R, ≤). If (R, ≤)	is,	for	example,	an	ordered	ring,	then	let	
us say that R is an ordered ring by the order ≤.

 For A, B ⊂ R, we will use the following notations:

	 −A	=	{−x | x ∈ A}, A + B = {x + y | x ∈ A, y ∈ B}, and A·A = {xy | x, y ∈ A}.

 Remark 1.	(1)	We	recall	the	following	(sR)	stronger	than	(R),	and	(P)	related	to	(sR)	(see	[2],	etc.).

 (sR): R has a total order ≤, but use “<” (instead of “≤”) in (or 1) and (or 2).

 (P): R has a subset P satisfying the following:

 (ord 1) P ∪	(−P ) = R \ {0}.

 (ord 2) P + P ⊂ P, and P · P ⊂ P .

	 A	field	R	is	an	ordered	field	iff	R is an ordered ring in the sense of (sR). Every ordered ring R in the sense of (sR) or (P) is an 

integral	domain.	But,	every	ordered	ring	(in	the	sense	of	(R))	need	not	be	an	integral	domain;	see	Example	1	below.

 (2) Related to (R), we consider the following (P)* weaker than (P).

 (P)*: R has a subset S satisfying the following:

 (ord 1)* R = S ∪	(−S), but S ∩	(−S) = {0}.

 (ord 2)* S + S ⊂ S and S · S ⊂ S.

 In (R), put S = {x ∈ R | x ≥ 0}, then S	(denoted	by	λ	(≤))	satisfies	(ord	1)* and (ord 2)* in (P)*.	Conversely,	in	(P)*,	define	 

a ≤ b if b	−	a ∈ S in (P)*, then ≤ (denoted by µ (S))	satisfies	(or	1)	and	(or	2)	in	(R).	Also,	µ	(λ	(≤)) = ≤	and	λ	(µ(S)) = S,	thus	λ	

and µ are inverse correspondence alternately. The similar holds between (sR) and (P).
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 A subset P of R satisfying (ord 1) and (ord 2) in (P) is called a positive cone of R. Similarly, let us call a subset S of R 

satisfying (ord 1)* and (ord 2)* in (P)* a non-negative cone of R.

 In view of Remark 1(2), if R has a non-negative cone (resp. positive cone), then R is an ordered ring (resp. ordered integral 

domain), and the converse holds.

 A map f : R → R’ is a homomorphism if f (x + y) = f (x) + f (y), f (xy) = f (x) f (y), and f (1) = 1’, where 1; 1’ is the identity 

element of R; R’, respec tively. A homomorphism f is an isomorphism (resp. monomorphism) if it is bijective (resp. injective). 

We	note	that	every	homomorphism	of	a	field	is	a	monomorphism.

	 The	following	example	shows	that	every	ordered	ring	need	not	be	an	integral	domain.

 Example 1. Let (K, ≤K)	be	an	ordered	field.	Let	R be a vector space over K with a basis {1, α}.	Define	multiplication	on	R as 

follows: (a + bα)(c + dα) = ac + (ad + bc) α (a, b, c, d ∈ K). Then R is a ring, but not an integral domain since α2 = 0. To make 

R be an ordered ring, let us show that R	has	only	two	extension	orders	of	≤K , and then R is an ordered ring by these orders.

 Proof. For x = a + bα  0 in R,	define	0	<x if 0 <K a; or a = 0 with 0 <K b.	We	define	x ≤ y if 0 ≤ y	−	x. Then (R, ≤) is an 

ordered ring such that ≤	is	an	extension	of	≤K.

	 To	get	other	extension	order	≤’ on R,	define	a	map	σ of R to itself by σ(a + bα) = a	−	bα. Then σ is an isomorphism (with  

σ2 = id). Thus the isomorphism σ induces an order ≤’ on R	defined	by	x ≤’ y if σ(x) ≤ σ(y). Then (R, ≤’) is an ordered ring such 

that ≤’ is	an	extension	of	≤K.

 Let S = {x ∈ R | 0 ≤ x}, and S’ = {x ∈ R | 0 ≤’ x}. Then S’ = σ(S).

 Now, suppose that (R, ) is an ordered ring such that 	is	an	extension	of	≤K . Let S * = {x ∈ R | 0  x}. Let x = a + bα ∈ R 

with x> 0.

	 Case	1.	α  0: If a = 0, then 0 <K b. Thus, b  0, so bα  0, which implies x  0. If a  0, then 0 <K a, so a  0. Noting x =  

a	(	1	+ ba
	α) = a (	1	+ b

2a
 
α)2, we see x 	0.	Hence,	S ⊂ S *, which implies S = S * .

	 Case	2.	α ≺ 0: Similarly, we have σ(S) = S * as	in	Case	1.

	 Consequently,	R	has	only	two	extension	orders	(one	is	≤	defined	by	S (i.e., x ≤ y iff y	−	x ∈ S), and another is ≤’ defined	by	S’ 

with S  S’), and R is an ordered ring by these orders.

 We assume that any ideal I in R	satisfies	I  R.

 Let I be an ideal in R. Let R / I be the residue class ring. For a ∈ R,	let	[a]	mean	a + I in R / I. Let us recall the following  

basic	definitions	in	[1]	((1)	will	play	an	important	role	in	(2)).

	 Definition 2. Let (R, ≤) be a partially ordered ring and I an ideal in R.

 (1) I is convex if whenever 0 ≤ x ≤ y and y ∈ I, then x ∈ I.

 (2) For a ∈ R,	define	[a]	≥ 0 in R / I	 if	 there	exists	x ≥ 0 in R	with	[a]	=	[x]	 (with	 the	same	symbol	≤ in R / I without 

confusion).

 In what follows, we assume that any residue class ring R / I of a partially ordered ring R has the above ordering relation 

induced from R, unless oth erwise stated.

 Example 2. Let K	be	an	ordered	field.	Let	K [x]	be	the	polynomial	ring	over	K in one variable x.	We	define	the	following	total	

orders 1 and 2 on K [x]:	0	≺1 f (x) (resp. 0 ≺2 f (x)) if the coefficient of the highest (resp. lowest) degree of f (x) is positive. 

Then K [x]	is	an	ordered	ring	by	these	total	orders.	For	a	non-zero	ideal	I in K [x],	the	following	hold.

 (1) I	is	not	convex	in	(K [x],	1).
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 (2) I	is	convex	in	(K [x],	2) iff I is generated by a monomial.

 Proof. We recall that K [x]	is	a	principal	ideal	domain,	so	I is generated by a polynomial h (x) = axn + ··· + bxi (a, b ∈ K, a  0, 

n > i ≥ 0).

 For (1), assume a = 1 in h (x). Since 0 ≺1 1 ≺1 h (x) ∈ I and 1  I, I	is	not	convex	in	(K [x],	1).

 For (2), suppose h (x) is a monomial. Assume h (x) = xn (n> 0). Let 0 ≺2 f (x) ≺2 g (x) ∈ I. Since g (x) ∈ I,	there	exists	k (x) ∈ 

K [x]	with	g (x) = xnk (x).	Further,	there	exist	q (x), r (x) ∈ K [x]	such	that	f (x) = xnq (x) + r (x) and deg r (x) <n. Suppose r (x)  

0. Then the coefficient of the lowest degree of r (x) is positive since f (x) 2	0.	Hence	g (x)	−	f (x) = xn (k (x)	−	q (x))	−	r (x) ≺2 0, 

a contradiction. Thus r (x) = 0, so f (x) = xnq (x) ∈ I.	Hence	I	is	convex.	Conversely,	suppose	h (x) is not a monomial. Assume  

b = 1 in h (x), and let f (x) = 
1
2

 xi ∈ K [x].	Then	0	≺2 f (x) ≺2 h (x) ∈ I, but f (x)  I.	Hence	I	is	not	convex	in	(K [x],	2).

 Lemma 1	 ([1]).	Let	 (R,	≤) be a partially ordered ring, and I be an ideal in R. Then I	 is	convex	 iff	R / I is a partially  

ordered ring.

 Lemma 2. Let (R, ≤) be a partially ordered ring, and I be an ideal in R. Let S = {x ∈ R | x ≥ 0}, and φ be the natural 

homomorphism of R to R / I defined by φ (a)	=	[a].	Then	the	following	(1)	and	(2)	hold.

	 (1)	The	following	are	equivalent.

  (a) R / I is an ordered ring.

  (b) φ	(S) is a non-negative cone of R / I.

  (c) I	is	convex,	and	R = (S ∪	−	S) + I.

	 (2)	The	following	are	equivalent.

  (a) R / I is an ordered integral domain.

  (b) φ (S \ I) is a positive cone of R / I.

  (c) I	is	convex	and	prime,	and	R = (S ∪	−	S) + I.

 Proof. For (1), let S * = φ (S). Note that φ (R) = S * ∪	(−	S *) iff R = (S ∪	−	S) + I. Then the implication (a) ⇒ (c) ⇒ (b) holds 

by Lemma 1. For (b) ⇒ (a), φ (S)	=	{[a]	|	[a]	≥ 0}, then (a) holds.

 For (2), note that I is prime iff R / I is an integral domain. (a) ⇒ (c) holds by means of (1). For (c) ⇒ (b), and (b) ⇒ (a) hold 

by the same way as in (1).

 Remark 2. In Lemma 2, for a prime ideal I in R, R = (S ∪	−	S) + I holds if for each a ∈ R	\{0},	there	exists	b ∈ R with a2 = b2 

and b> 0 (indeed, I is prime, then a	−	b ∈ I or a + b ∈ I, hence R = (S ∪	−	S) + I).

	 The	following	example	shows	that	(i)	every	R need not be an ordered ring even if R / I is an ordered integral domain, and (ii) 

the condition R = (S ∪	−	S) + I is essential in Lemma 2.

 Example 3. Let Z [x]	be	the	polynomial	ring	over	Z in one variable x. Let I be the ideal in Z [x]	generated	by	x. Then the 

following hold.

 (i) Let S = N ∪{0}. Then S ∩	−	S = {0}, S + S ⊂ S, and S · S ⊂ S.	Define	a	partial	order	 by S on Z [x]:	f  g if g	−	f ∈ S. 

Then  is not a total order on Z [x].	While,	I	is	convex	and	prime,	and	Z [x]	=	(S ∪	−	S) + I. Thus, by Lemma 2 (2), Z [x]	/ I is 

an ordered integral domain.

 (ii) Let S’ = {2n | n ∈ N} ∪ {0}. Replace “S” by “S’”	in	(i),	and	define	’ by S’ as in (i), then the same in (i) holds on S’ and ’ . 

Similarly, I	is	prime,	and	convex	(thus,	(Z [x]	/ I, ≤’) is a partially ordered ring by Lemma 1). But, Z [x]	 (S’ ∪	−	S’) + I and  

(Z [x]	/ I, ≤’) is not an ordered ring.

 For an ordered ring (R, ≤), let S = {x ∈ R | x ≥ 0}. Then R = S ∪	−	S, thus R = (S ∪	−	S) + I.	Hence	the	following	theorem	
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holds by Lemma 2.

 Theorem 1. Let (R, ≤) be an ordered ring. Then the following (1) and (2) hold under the same notations in Lemma 2.

	 (1)	The	following	are	equivalent.

  (a) R / I is an ordered ring.

  (b) φ	(S) is a non-negative cone of R / I.

  (c) I	is	convex.

	 (2)	The	following	are	equivalent.

  (a) R / I is an ordered integral domain.

  (b) φ	(S \ I ) is a positive cone of R / I,

  (c) I	is	convex	and	prime.

 Corollary 1. Let (R, ≤)	be	an	ordered	 integral	domain.	Then	 the	following	are	equivalent	under	 the	same	notations	 in	
Lemma 2, but use P = {x ∈ R | x> 0} (instead of S).

 (1) R / I is an ordered integral domain.

 (2) φ	(P ) \{0} is a positive cone of R / I.

 (3) For any x, y in P \ I, x + y  I and xy  I.

 (4) I	is	convex	and	prime.

 Proof. (1) , (2) , (4) holds by Theorem 1(2), and (2) ⇒ (3) is obvious. For (3) ⇒ (1) & (2), let P*  = φ	(P) \ {0}. By (3), 

P*+P* ⊂ P* and P*·P*⊂ P*. Also, P* ∪	−	P*= φ	(R)	\	{0}.	Hence,	(1)	and	(2)	hold.

	 In	(4)	of	Corollary	1,	the	convexity	of	I	is	essential,	and	so	is	the	prime	ness.	Indeed,	we	have	the	following	example.

 Example 4. (1) An ordered integral domain (R, ≤) having an ideal I	which	is	prime,	but	not	convex.	(Here,	R / I is not a 

partially ordered ring by the order ≤	in	the	sense	of	Definition	2,	but	it	is	an	ordered	field	by	some	total	order).
 (2) An ordered integral domain R’ having an ideal I	which	is	convex,	but	not	prime.	(Here,	R’ / I is an ordered ring).

 Proof. For (1), let R = K [x]	be	the	ordered	integral	domain	by	the	order	≤ = 1	in	Example	2.	Let	I be the ideal in R generated 

by x. Then I	is	prime,	but	it	is	not	convex	in	(R, ≤)	by	Example	2	(1).	For	the	parenthetic	part,	the	first	half	holds	by	Lemma	1.	
For the latter part, R / I	is	isomorphic	to	the	ordered	field	K, thus R / I	is	an	ordered	field	by	some	total	order.

 For (2), let R’ = K [x]	be	the	same	as	(1)	with	≤ =  2	in	Example	2.	Let	I be the ideal in R’ generated by x2. Then I is not 

prime. While, I	is	convex	by	Example	2	(2).	Thus	the	parenthetic	part	holds	by	Theorem	1	(1).

 Now, let us recall the classic ring C (X) / I	in	[1]	as	an	important	case	of	the	residue	class	ring	R / I. For a completely regular 

space X, let C (X) be the set of all continuous maps from X to R. Then C (X) is a partially ordered ring (that is; for f, g ∈ C (X), 

define	(f + g) (x) = f (x) + g (x), fg (x) = f (x) g (x); and for r ∈ R, r ∈ C (X) is the constant map r (x) ≡ r.	Define	a	partial	order	≤ 

on C (X) by f ≤ g if f (x) ≤ g (x) for all x ∈ X).

 A map f : (R, ≤) → (R’ , ≤’) is called order-preserving if for x ≤ y, f (x) ≤’ f (y).

	 Let	us	recall	the	following	classic	result	[1;	Theorem	5.5].

 For a prime ideal I in C (X), C (X) / I is an ordered ring (with I	convex),	and	the	map	η : R → C (X) / I	defined	by	η	(r)	=	[r]	is	

an order-preserving monomorphism.
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 Let M	be	a	maximal	ideal	in	C (X).	In	view	of	the	above,	the	ordered	field	C (X) / M contains a canonical copy of R as a 

subfield.	We	recall	that	C (X) / M is real if it is isomorphic to R, and hyper-real	if	it	is	not	real	([1;	5.6]).

	 For	an	ordered	field	(K, ≤), K is Archimedean if for each α, ß ∈ K with 0 < α < ß,	there	exists	n ∈ N such that ß < nα.

 We note that C (X) / M is real (resp. hyper-real) iff it is Archimedean (resp. non-Archimedean).

 Remark 3. For a non-pseudocompact space X (i.e., some f ∈ C (X) is unbounded, such as N, Q, or R,	etc.),	 there	exists	a	

maximal	ideal	M in C (X) such that C (X) / M	is	hyper-real,	but	every	ordered	field	C (X) / M	need	not	be	hyper-real;	see	[1;	

Theorems	5.8	(b)	and	5.14].	While,	for	a	Lindelöf	space	(i.e.,	every	open	cover	has	a	countable	subcover),	more	generally	a	real	

compact space X, an ordered field C (X) / M is hyper-real if ∩ { f −1	(0) | f ∈ M} = 0／;	see	[1;	5.9,	5.15,	or	8.2].	Thus,	for	example,	

let X = N (so C (X) =  RN), and F	be	an	ultra-filter	on	N with ∩ F = 0／. Then C (N) / M	is	hyper-real	for	the	maximal	ideal	M =  

{ f ∈ RN | f −1 (0) ∈ F }.

 In view of these, the second author has the following correction:

	 In	[5;	Note	2	(3)]	and	[6;	Example	3.3],	the	statement	that	the	or	dered	field	C (N) / M; C (Q) / M; or C (R) / M is hyper-real 

(equivalently,	non-metrizable)	should	be	valid	for	some	maximal	ideal	M in C (N); C (Q); or C (R), respectively).

	 Finally,	let	us	consider	order-preserving	homomorphisms	between	or	dered	fields.

 In what follows, (K, ≤) or (K’, ≤’)	means	an	ordered	field,	unless	other	wise	stated.

 In (K, ≤), the set (a, b) = {x ∈ K | a < x < b} (a < b) is called an open interval. Let f : (K, ≤) → (K’, ≤’) be a map. Then f is 

continuous if for each open interval (α, ß) ⊂ K’, G = f −1	((α, ß)) is open in K; that is, for x ∈ G,	there	exists	an	open	interval	 

(a, b) ⊂ K such that x ∈ (a, b) ⊂ G. Also, f	satisfies	Intermediate-Value Theorem if for each (a, b) in K, if α ∈ K’ is between f (a) 

and f (b),	then	there	exists	c ∈ (a, b) with f (c) = α.

	 Let	us	 recall	 that	an	ordered	field	 (K, ≤)	 satisfies	 the	axiom	of	continuity	 (equivalently,	K is isomorphic to R) iff all 

continuous maps from (K, ≤) to (K’, ≤’)	satisfy	Intermediate-Value	Theorem	(see	[4],	etc.).

	 For	isomorphisms	between	ordered	fields,	the	following	holds	(this	is	suggested	by	C.	Liu).

 Proposition 1. Let f : (K, ≤) → (K’, ≤’) be an isomorphism. Then f	 is	order-preserving	iff	 it	satisfies	Intermediate-Value	

Theorem.

 Proof. The “only if ” part is obvious. For the “if ” part holds, it suffices to see that for 0 ≤ a, 0 ≤’ f (a) (since f is a 

homomorphism). Suppose f (a) <’0. Let a> 1 (without loss of generality). Since f (1) = 1’ > 0, by Intermediate-Value Theorem, 

there	exists	b ∈ K with a > b > 1 such that f (b) = 0. But f (0) = 0 and f is injective, then b = 0, a contradiction.

	 The	following	result	is	shown	in	[6;	Theorem	2.3].

 If (K, ≤)	is	an	Archimedean	ordered	field,	then	all	continuous	homomor	phisms	of	(K, ≤) to any (K’, ≤’) are order-preserving.

	 Let	us	consider	a	question	whether	the	converse	of	this	result	holds.	We	will	give	an	example	which	shows	that	this	question	

is	negative	even	if	we	omit	 the	continuity	of	 the	homomorphisms	in	the	result.	Then,	we	will	give	a	characterization	for	an	

ordered	field	(K, ≤) to satisfy the following condition:

	 (C):	All	homomorphisms	of	(K, ≤) to any (K’, ≤’) are order-preserving.

 For an ordered ring (R, ≤),	we	shall	consider	the	following	conditions	(A)	and	(B),	and	define	a	non-negative	cone	S (≤) =  

{x ∈ R | x ≥ 0} of R.
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 (A): For each a≥ 0 in R,	there	exists	b ∈ R with a = b2 .

 (B): R is an ordered ring by only one total order ≤.

 In (B), we can replace “total order ≤” by “non-negative cone S (≤)” in view of Remark 1 (2).

 We note that (A) implies (B) (indeed, for any non-negative cone S, S (≤) ⊂ S by (A), thus S (≤) = S).

 Remark 4. (1) R	satisfies	(A),	and	so	does	the	Archimedean	ordered	field	of	all	algebraic	real	numbers	over	Q. While, Q (or 

Z)	satisfies	(B),	but	it	does	not	satisfy	(A).

	 (2)	Every	Archimedean	ordered	field	K need not satisfy (B), as is well-known. Indeed, let K = {a + b 2 : a, b ∈ Q} ⊂ R. Let 

P = {a + b 2  ∈ K : a	−	b 2  > 0}, where > is the usual order on K from R. Then K	is	an	Archimedean	ordered	field	by	the	

usual	order	and	a	different	order	defined	by	P.	(See	[6;	Example	3.2]	as	an	ordered	field	K’ ⊂ R by the usual order, and an order 

≤’ such that (K’, ≤’) is non-Archimedean).

 Lemma 3. Any ordered ring C (X)/I	satisfies	(A).

 Proof. To see C (X) / I	satisfies	(A),	let	[	f ]	≥ 0 for f ∈ C (X). Thus, we can assume f ≥ 0,	and	define	g = f . Then g ∈ C (X), 

and f = g2.	Thus	[	f	]	=	[g2]	=	[g]2 .	Hence,	C (X) / I	satisfies	(A).

 Example 5.	An	ordered	field	(K, ≤)	which	satisfies	(C),	but	is	not	Archimedean.

 Proof. Let K = (C (X) / M, ≤)	be	an	ordered	field	which	is	hyper-real	(hence,	not	Archimedean)	in	Remark	3.	Then	K	satisfies	
(A)	by	Lemma	3.	Thus,	obviously	(C)	holds.

 Theorem 2. For an ordered ring (R, ≤),	the	following	are	equivalent.
 (1) R	satisfies	(B).

 (2) All monomorphisms of (R, ≤) to any ordered ring (R’, ≤’) are order-preserving.

 Proof. For (1) ⇒ (2), let f : (R, ≤) → (R’, ≤’) be a monomorphism. Let S’  = {x ∈ R | 0 ≤’ f (x)}. Since f is a monomorphism, 

S’ gives a non-negative cone of R. Then, S (≤) = S’ by (B). This implies that f is order-preserving. For (2) ⇒ (1), suppose that R 

has a different non-negative cone S’ from S (≤).	Define	a	total	order	≤’ on R by a ≤’ b if b	−	a ∈ S’. Then the identity map of  

(R, ≤) to (R, ≤’) is not order-preserving. This is a contradiction to (2).

 Corollary 2.	For	an	ordered	field	(K, ≤),	the	conditions	(B)	and	(C)	are	equivalent.

 Remark 5. The following result (*) also holds by Theorem 2.

 (*) For an ordered integral domain (R, ≤), Theorem 2 holds, replacing “ordered ring” by “ordered integral domain” in (B) of 

(1), and in (2).

	 But,	 the	results	(*)	and	Corollary	2	are	equivalent.	Indeed,	this	is	shown	by	considering	that	for	the	fraction	field	K of an 

ordered integral R,	there	exists	uniquely	a	positive	cone	PK of K such that P = R ∩ PK for a positive cone P of R.
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順　序　環　と　順　序　保　存

北　村　　　好・田　中　祥　雄

数学分野

要　　旨

　周知のごとく，可換環Ｒが全順序をもち，この順序関係が加法と乗法の演算に関して順序保存であるときＲは順
序環と呼ばれている。とくに，Ｒが体のとき，Ｒを順序体という。
　順序環や順序体を考察し，いくつかの関連事項や例を挙げる。また，順序環の剰余環が順序環や順序整域となる
ための特徴付けを与える。さらに，順序環Ｒが条件「Ｒから任意の順序環への全ての準同型写像が順序保存とな
る」を満たすための特徴付けを与える。

キーワード:  順序環，順序体，剰余環，順序保存
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